5 research outputs found

    Consumer Engagement: Helping People Want What They Need

    Get PDF
    Developing or delivering a product, tool, or service that meets consumers' needs and leads to impactful behavior change is a significant challenge. Simply creating tools to foster financial security has not been enough to ensure that consumers will use them, much less benefit from them. Consumer engagement is an approach to tackling these key challenges that focuses on the needs, expectations, and realities of those being served by financial empowerment practitioners.Consumer Engagement: Helping People Want What They Need describes both a philosophy and a process for developing and delivering financial products and services. At the core is the consumer, who is the intended target of financial empowerment efforts and the key stakeholder; he/ she is the actor who ultimately decides what tools to use and is an indispensable source of intelligence about his/her needs and wants.Three pillars define consumer engagement, each of which informs and relies on the others: Demand Focus, Deep Connection, and Enthusiastic Use

    Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: slow infusion versus bolus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myocardial extravascular extracellular volume fraction (Ve) measures quantify diffuse fibrosis not readily detectable by conventional late gadolinium (Gd) enhancement (LGE). Ve measurement requires steady state equilibrium between plasma and interstitial Gd contrast. While a constant infusion produces steady state, it is unclear whether a simple bolus can do the same. Given the relatively slow clearance of Gd, we hypothesized that a bolus technique accurately measures Ve, thus facilitating integration of myocardial fibrosis quantification into cardiovascular magnetic resonance (CMR) workflow routines. Assuming equivalence between techniques, we further hypothesized that Ve measures would be reproducible across scans.</p> <p>Methods</p> <p>In 10 volunteers (ages 20-81, median 33 yr, 3 females), we compared serial Ve measures from a single short axis slice from two scans: first, during a constant infusion, and second, 12-50 min after a bolus (0.2 mmol/kg gadoteridol) on another day. Steady state during infusion was defined when serial blood and myocardial T1 data varied <5%. We measured T1 on a 1.5 T Siemens scanner using a single-shot modified Look Locker inversion recovery sequence (MOLLI) with balanced SSFP. To shorten breath hold times, T1 values were measured with a shorter sampling scheme that was validated with spin echo relaxometry (TR = 15 sec) in CuSO4-Agar phantoms. Serial infusion vs. bolus Ve measures (n = 205) from the 10 subjects were compared with generalized estimating equations (GEE) with exchangeable correlation matrices. LGE images were also acquired 12-30 minutes after the bolus.</p> <p>Results</p> <p>No subject exhibited LGE near the short axis slices where Ve was measured. The Ve range was 19.3-29.2% and 18.4-29.1% by constant infusion and bolus, respectively. In GEE models, serial Ve measures by constant infusion and bolus did not differ significantly (difference = 0.1%, p = 0.38). For both techniques, Ve was strongly related to age (p < 0.01 for both) in GEE models, even after adjusting for heart rate. Both techniques identically sorted older individuals with higher mean Ve values.</p> <p>Conclusion</p> <p>Myocardial Ve can be measured reliably and accurately 12-50 minutes after a simple bolus. Ve measures are also reproducible across CMR scans. Ve estimation can be integrated into CMR workflow easily, which may simplify research applications involving the quantification of myocardial fibrosis.</p

    Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case

    Get PDF
    International audienceWe examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of standard model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the m scale up to the Big Bang Nucleosynthesis limit of m. Neutral LLPs with lifetimes above 100 m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging backgrounds, triggers, and small acceptances. MATHUSLA is a proposal for a minimally instrumented, large-volume surface detector near ATLAS or CMS. It would search for neutral LLPs produced in HL-LHC collisions by reconstructing displaced vertices (DVs) in a low-background environment, extending the sensitivity of the main detectors by orders of magnitude in the long-lifetime regime. We study the LLP physics opportunities afforded by a MATHUSLA-like detector at the HL-LHC, assuming backgrounds can be rejected as expected. We develop a model-independent approach to describe the sensitivity of MATHUSLA to BSM LLP signals, and compare it to DV and missing energy searches at ATLAS or CMS. We then explore the BSM motivations for LLPs in considerable detail, presenting a large number of new sensitivity studies. While our discussion is especially oriented towards the long-lifetime regime at MATHUSLA, this survey underlines the importance of a varied LLP search program at the LHC in general. By synthesizing these results into a general discussion of the top–down and bottom-up motivations for LLP searches, it is our aim to demonstrate the exceptional strength and breadth of the physics case for the construction of the MATHUSLA detector

    Long-lived particles at the energy frontier: the MATHUSLA physics case

    No full text
    corecore